Momentive Performance Materials developed its family of SilCool thermally conductive adhesives to help deliver thin bond lines, which contribute to low thermal resistance while providing excellent adhesion and reliability. This series of heat-cured adhesives excel in thermal interface applications that demand good structural adhesion. Examples include spreaders and heat generators, and thermal interfaces to heat sinks in TIM2 applications.

Additional thermal adhesives from Momentive offer the process convenience of 1-Part condensation cure with moderate heat dissipation. Target applications include board assemblies and sealants in power modules and sensors.

SilCool* Silicone Adhesive - Addition Cure

The SilCool series silicone adhesives from Momentive Performance Materials offer 1-Part, heat curable materials that bond well to a wide variety of substrates without the need for primers. They help deliver outstanding thermal conductivity, low thermal resistance, excellent dielectric properties, and low stress. SilCool adhesives are excellent candidates for addressing the heat management challenges arising from the higher frequencies, power, and miniaturization in today's electronic devices. Designed to efficiently conduct heat, these materials are valuable additions to semiconductor packages that incorporate heat generating chips, heat spreaders, and heat sinks (TIM1 & TIM2).

Key Features

- Highly workable excels in automated dispensing, screen printing, and stamping applications
- Fast cure & good adhesion
- High thermal conductivity
- Low thermal resistance
- Wide operating temperature range
- Compatible with high-temperature lead-free processing
- Minimal ionic impurities & excellent dielectric properties

Product Details

Properties	TIA600R	TIA350R	TIA260R	XE13-C1862PT	TSE3281-G
Features	High thermal conductivity, strong	High thermal conductivity, low	Good thermal conductivity, low	Good thermal conductivity, high	
	adhesion	temperature fast cure	temperature fast cure	elongation	_
Туре	1 part	1 part	1 part	1 part	1 part
Property (uncured)	Flowable	Flowable	Flowable	Flowable	Flowable
Color	Gray	Gray	Gray	Gray	Gray

Properties		TIA600R	TIA350R	TIA260R	XE13-C1862PT	TSE3281-G
Viscosity (23°C)	Pa.s	130	67	70	55	60
Cure Condition	°C/h	150/1	120/0.5	120/0.5	150/1	150/1
Thermal Conductivity ²	W/m.K	6.0	3.5	2.5	2.5	1.7
Thermal Resistance ²	(BLT) mm2.K/W	11 (50μm)	24 (60µm)	25 (50µm)	25 (50μm)	35 (50µm)
Specific Gravity (23°C)		3.44	3.1	2.89	2.87	2.70
Hardness (Type A)		95	77	55	65	84
Tensile Strength	Mpa	7.0	1.6	1.1	1.5	4.5
Elongation	%	10	20	40	80	50
Adhesion (Al lap shear)	MPa	5.4 (Ni/Ni)	1.0	0.8	1.0	2.5
CTE	ppm/K	90	115	130	130	140
Glass Transition Temp.	°C	-120	-120	-120	-120	-120
Volume Resistivity	MΩ.m	4.8×10^{6}				
Dielectric Strength	kV/mm	20	20	20	20	15
Volatile Siloxane (D4-D10)	ppm	<100	<150	<200	<200	-
Ionic Content3 (Na+/K+/Cl-)	ppm	each <5	each <5	each <5	each <5	each <10
Moisture Absorption	wt%	<0.6	<0.6	<0.6	<0.6	<0.6

¹Hot wire method, ²Laser flash analysis on Si-Si sandwiched material, ³Ion chromotography analysis on water extracts *⁴Impressed voltage: 100V Typical property data values should not be used as specifications

(Charts) Thermal Resistance is proportional to the thickness of the material through which the heat must travel. Increases in pressure during the component assembly process are known to contribute to reductions in thickness of the thermal interface (BLT), and subsequently, reduced thermal resistance.

(Above) Test Conditions: Sandwich material between 10mm×10mm silicon dies, and cure for 1 hour at 150°C. Measure thermal resistance using laser flash method.

(Above) Test Conditions: Sandwich material between 10mm×10mm silicon dies, assemble at 500kPa and cure at 150°C for 1 hour. Thermal cycle (-55°C~150°C, dwell time 30 minutes at each extreme). Measure thermal resistance using laser flash method.

(Above) Test Conditions: Sandwich material between 10mm×10mm silicon dies, assemble at 500kPa and cure at 150°C for 1 hour. High temperature / humidity test (85°C, 85%RH, 250, 500, 750, 1000 hours). Measure thermal resistance using laser flash method.

Silicone Adhesive - Condensation Cure

Momentive Performance Materials offers a range of condensation cure adhesives and sealants that deliver thermal conductive performance. These materials cure to form an elastic rubber when exposed to atmospheric moisture at room temperatures, eliminating the need for heat ovens. The result is a unique combination of process efficiency and excellent thermal conductivity. Our condensation-cure adhesives and sealants are commonly applied in board assembly and sensor applications that require moderate thermal management performance and ease of use.

Product Details

Properties		TIA0260	TIA0220	XE11-B5320
Features		High thermal conductivity, strong adhesion	High thermal conductivity, strong adhesion	Fast tack free time, UL certified
Туре		1 part	1 part	1 part
Property (uncured)		Semi-Flowable	Semi-Flowable	Semi-Flowable
Color		Light Gray	Gray	White
Viscosity (23°C)	Pa.s	150	300	-
Tack Free Time	min	10	10	5
Thermal Conductivity ¹	W/m.K	2.6	2.2	1.3
Thermal Resistance ²	(BLT) mm2.K/W	18 (50µm)	25 (50μm)	35 (50µm)
Specific Gravity (23°C)		3.01	2.87	2.59
Hardness (Type A)		90	88	80
Tensile Strength	Mpa	4.8	5.2	3.6
Elongation	%	20	40	40
Adhesive Strength	MPa	3.0	4.2	1.3
СТЕ	ppm/K	100	110	120
Glass Transition Temp.	°C	-120	-120	-120
Volume Resistivity	MΩ.m	7.0×10^{6}	1.0×10^{7}	2.0×10^7
Dielectric Strength	kV/mm	20	20	17
Volatile Siloxane (D4-D10)	ppm	10	20	100
Flame Retardancy				UL94 HB

¹Hot wire method, ²Laser flash analysis on Si-Si sandwiched material Typical property data values should not be used as specifications

